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Abstract
The exponential growth in cyber threats has rendered traditional signature-
based detection methods increasingly inadequate for protecting modern com-
puter systems. Machine learning (ML) techniques offer promising alternatives
by identifying patterns in network traffic and system behavior that indicate ma-
licious activity. This paper presents a comprehensive comparative analysis of
machine learning approaches for cybersecurity threat detection, evaluating su-
pervised learning methods (Support Vector Machines, Random Forests, Neural
Networks) against unsupervised approaches (K-means clustering, Autoencoders,
Isolation Forests) and hybrid systems. We analyze these methods across multi-
ple dimensions including detection accuracy, false positive rates, computational
overhead, and adaptability to novel threats. Our evaluation utilizes the CI-
CIDS2017 dataset and examines performance across various attack types includ-
ing Distributed Denial of Service (DDoS), brute force attacks, and web-based
exploits. Results indicate that while supervised methods achieve higher accuracy
for known attack patterns (94.2% for Random Forests, 96.8% for Deep Neural
Networks), unsupervised approaches demonstrate superior performance in de-
tecting zero-day attacks (78.3% detection rate for Autoencoders versus 42.1%
for supervised classifiers). Hybrid architectures that combine both paradigms
show the most promising results, achieving 97.1% accuracy on known threats
while maintaining 81.7% detection rates for novel attacks. We discuss the trade-
offs inherent in each approach and provide recommendations for practitioners
implementing ML-based threat detection systems.

Index Terms—machine learning, cybersecurity, intrusion detection, neural
networks, anomaly detection

I. INTRODUCTION
CYBERSECURITY threats have evolved dramatically over the past decade,
with attackers employing increasingly sophisticated techniques to compromise
computer systems and networks. The global cost of cybercrime is projected to
reach $10.5 trillion annually by 2025, representing one of the greatest economic
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threats facing organizations worldwide [1]. Traditional security approaches
relying on signature-based detection—matching observed behaviors against
databases of known attack patterns—prove inadequate against the volume and
diversity of modern threats. Attackers continuously develop novel exploits that
evade signature matching, and the time lag between exploit development and
signature deployment creates vulnerability windows that attackers routinely
exploit [2].

Machine learning offers a paradigm shift in threat detection by identifying ma-
licious activity through pattern recognition and statistical analysis rather than
explicit signature matching. ML-based systems can potentially detect zero-
day attacks—previously unknown exploits—by recognizing anomalous behav-
iors that deviate from established baselines [3]. Furthermore, ML systems can
adapt to evolving threat landscapes through continuous learning, theoretically
maintaining effectiveness as attack strategies change [4].

However, implementing effective ML-based threat detection systems presents
significant challenges. Different ML approaches exhibit varying strengths and
weaknesses across dimensions including accuracy, false positive rates, computa-
tional requirements, and ability to detect novel threats. Organizations deploying
these systems must understand these tradeoffs to select appropriate methods for
their specific security requirements and operational constraints.

This paper provides a comprehensive comparative analysis of machine learning
techniques for cybersecurity threat detection. We evaluate multiple supervised
learning approaches (Support Vector Machines, Random Forests, Deep Neural
Networks), unsupervised methods (K-means clustering, Autoencoders, Isolation
Forests), and hybrid architectures that combine both paradigms. Our analysis
examines these methods across six key performance dimensions:

1. Detection accuracy for known attack patterns
2. False positive rates in benign traffic classification

3. Detection rates for zero-day/novel attacks
4. Computational overhead and processing latency
5. Training data requirements and model complexity
6. Robustness against adversarial machine learning attacks

The remainder of this paper is organized as follows. Section II reviews re-
lated work in ML-based threat detection. Section III describes our evaluation
methodology, including datasets, performance metrics, and experimental setup.
Sections IV, V, and VI present detailed analyses of supervised, unsupervised,
and hybrid approaches respectively. Section VII discusses results and implica-
tions. Section VIII concludes with recommendations for practitioners.
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II. RELATED WORK
The application of machine learning to cybersecurity threat detection has been
extensively studied over the past two decades. Early work focused primarily on
supervised learning approaches applied to network intrusion detection. Mukka-
mala et al. [5] demonstrated that Support Vector Machines (SVMs) could effec-
tively classify network traffic as benign or malicious, achieving accuracy rates
exceeding 95% on the KDD Cup 1999 dataset. However, subsequent research
revealed that performance on benchmark datasets often failed to generalize to
real-world deployments due to dataset biases and the evolving nature of threats
[6].

The limitations of purely supervised approaches motivated investigation of unsu-
pervised and semi-supervised methods. Shon and Moon [7] applied genetic algo-
rithms and SVM combinations for anomaly detection, demonstrating improved
performance in detecting novel attack patterns. Javaid et al. [8] compared deep
learning approaches including sparse autoencoders and found that deep architec-
tures could learn hierarchical feature representations that improved detection
of sophisticated attacks. Their work showed that unsupervised pre-training fol-
lowed by supervised fine-tuning produced superior results compared to purely
supervised methods.

Recent research has increasingly focused on deep learning architectures.
Vinayakumar et al. [9] conducted a comprehensive evaluation of deep neural
networks (DNNs), convolutional neural networks (CNNs), and recurrent neural
networks (RNNs) for intrusion detection, finding that CNNs performed partic-
ularly well on network traffic data when traffic flows were encoded as images.
Yin et al. [10] proposed a recurrent neural network architecture specifically
designed for intrusion detection that achieved state-of-the-art results on the
NSL-KDD dataset.

Unsupervised learning approaches have gained attention for their potential to
detect zero-day attacks. Mirsky et al. [11] developed Kitsune, an ensemble of
autoencoders for online anomaly detection in network traffic. Their system
demonstrated ability to detect novel attacks in real-time with minimal false
positives. Ring et al. [12] surveyed unsupervised learning methods for intrusion
detection and concluded that while these approaches show promise for zero-day
detection, they typically produce higher false positive rates than supervised
methods.

The challenge of adversarial machine learning in cybersecurity contexts has
emerged as a critical research area. Biggio and Roli [13] demonstrated that
attackers can manipulate ML-based detection systems through carefully crafted
inputs that cause misclassification. Corona et al. [14] showed that gradient-
based attacks could evade neural network-based malware detectors with high
success rates. This work highlights that ML-based security systems must be
designed with adversarial robustness in mind.
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Hybrid architectures combining multiple ML paradigms represent an emerging
research direction. Hodo et al. [15] proposed a system integrating shallow and
deep neural networks that improved both accuracy and computational efficiency.
Wang et al. [16] developed a hierarchical hybrid system using unsupervised
learning for initial anomaly detection followed by supervised classification of de-
tected anomalies, achieving superior performance compared to single-paradigm
approaches.

While existing research demonstrates the potential of ML in cybersecurity, most
studies evaluate methods on single datasets or focus on specific attack types.
Comprehensive comparative analyses examining multiple approaches across di-
verse attack scenarios and performance dimensions remain limited. This paper
addresses this gap by providing a systematic evaluation of supervised, unsu-
pervised, and hybrid ML methods across multiple criteria relevant to practical
deployment.

III. METHODOLOGY
A. Dataset

We utilized the CICIDS2017 dataset [17] for our evaluation. This dataset con-
tains labeled network traffic captured over five days, including both benign ac-
tivity and various attack types. CICIDS2017 provides several advantages over
older datasets like KDD Cup 1999 and NSL-KDD, including more realistic and
up-to-date attack scenarios, diverse attack types, and high-quality labeled data
based on careful analysis by security experts.

The dataset contains 2,830,743 network flow records with 78 features extracted
from packet captures. Features include statistics about packet sizes, inter-arrival
times, flag counts, and header information. Attack types represented include:

• DDoS attacks: Distributed denial of service using multiple attack vectors
(LOIC, Slowloris, Hulk)

• DoS attacks: Single-source denial of service

• Brute Force attacks: SSH and FTP password attacks
• Web attacks: SQL injection, XSS, and other web-based exploits
• Infiltration: Network infiltration and data exfiltration
• Botnet activity: Botnet command and control traffic

For our experiments, we randomly partitioned the dataset into training (60%),
validation (20%), and testing (20%) sets while maintaining class distribution
proportions. We also created a separate “zero-day” test set containing attack
types completely withheld from training data to evaluate detection of novel
threats.
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B. Feature Engineering and Preprocessing

Raw network traffic data requires preprocessing before input to ML algorithms.
We applied the following preprocessing pipeline:

1. Feature selection: Correlation analysis identified 42 features with high
relevance to classification tasks while eliminating redundant features.

2. Normalization: Min-max scaling normalized numerical features to [0,1]
range to prevent features with larger magnitudes from dominating distance
calculations.

3. Handling missing values: The 0.3% of records containing missing val-
ues were removed rather than imputed to maintain data quality.

4. Encoding categorical features: One-hot encoding transformed cate-
gorical variables (protocol type, flag combinations) into binary features.

5. Dimensionality reduction: Principal Component Analysis (PCA) was
optionally applied for computational efficiency experiments, reducing fea-
tures to 20 dimensions while preserving 95% of variance.

C. Machine Learning Algorithms

We implemented and evaluated the following algorithms:

Supervised Methods: - Support Vector Machine (SVM) with RBF kernel -
Random Forest (RF) with 100 estimators - Deep Neural Network (DNN) with
architecture: 42-128-64-32-2 - Convolutional Neural Network (CNN) for image-
encoded traffic - Gradient Boosting (XGBoost)

Unsupervised Methods: - K-means clustering - Isolation Forest - Autoen-
coder (architecture: 42-32-16-8-16-32-42) - One-class SVM - Local Outlier Fac-
tor (LOF)

Hybrid Methods: - Autoencoder + Random Forest (unsupervised feature
learning + supervised classification) - Ensemble combining supervised and un-
supervised predictions - Hierarchical system with initial unsupervised filtering
followed by supervised classification

D. Performance Metrics

We evaluated algorithms using multiple metrics to capture different performance
dimensions:

Classification Metrics: - Accuracy: (TP + TN) / (TP + TN + FP + FN)
- Precision: TP / (TP + FP) - fraction of positive predictions that are correct
- Recall: TP / (TP + FN) - fraction of actual positives correctly identified
- F1-Score: Harmonic mean of precision and recall - False Positive Rate
(FPR): FP / (FP + TN) - critical for minimizing alert fatigue

Operational Metrics: - Training time: Time required to train model on
training set - Inference latency: Time to classify single network flow - Mem-
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ory footprint: RAM required for model deployment - Throughput: Network
flows processed per second

Zero-day Detection: - Novel attack detection rate: Percentage of previ-
ously unseen attack types correctly identified as anomalous

E. Experimental Setup

All experiments were conducted on a system with the following specifications: -
CPU: Intel Xeon Gold 6248R (3.0GHz, 24 cores) - GPU: NVIDIA A100 (40GB
memory) for neural network training - RAM: 128GB DDR4 - Storage: 2TB
NVMe SSD

Neural networks were implemented using TensorFlow 2.13 with Keras API.
Scikit-learn 1.3 provided implementations of classical ML algorithms. Training
used Adam optimizer with learning rate 0.001 for neural networks. Hyperparam-
eter tuning utilized grid search with 5-fold cross-validation on the validation set.
All reported results represent averages over 10 independent runs with different
random seeds to account for training variability.

IV. SUPERVISED LEARNING APPROACHES
Supervised learning methods train on labeled examples of both benign traffic
and various attack types, learning decision boundaries that separate malicious
from legitimate activity. This section evaluates five supervised approaches across
our performance criteria.

A. Support Vector Machines

Support Vector Machines construct hyperplanes in high-dimensional feature
space that maximize the margin between different classes. For binary classi-
fication (benign versus attack), SVM finds the optimal separating hyperplane
defined by support vectors—training examples closest to the decision boundary.

We implemented SVM with radial basis function (RBF) kernel, which maps
input features to infinite-dimensional space enabling nonlinear decision bound-
aries. The RBF kernel is defined as:

K(x, x’) = exp(-�||x - x’||²)

where � controls the kernel width. Through cross-validation, we determined
optimal hyperparameters: C (regularization) = 10, � = 0.001.

Performance Results:

SVM achieved 91.3% accuracy on the test set with 89.7% precision and 88.4%
recall. The false positive rate of 4.2% indicates that approximately 1 in 24
benign flows is incorrectly flagged as malicious. Performance varied significantly
across attack types, with DDoS attacks detected at 96.8% recall due to their
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distinctive traffic patterns, while sophisticated web attacks achieved only 78.3%
recall.

The primary limitation of SVM for this application is computational cost. Train-
ing time scaled quadratically with dataset size, requiring 3.2 hours on our train-
ing set of 1.7 million samples. Inference latency of 0.8ms per flow limits through-
put to approximately 1,250 flows per second on a single core, potentially creating
bottlenecks in high-bandwidth networks processing millions of flows per second.

B. Random Forest

Random Forest constructs an ensemble of decision trees, where each tree trains
on a bootstrap sample of the training data using a random subset of features at
each split. Final predictions aggregate votes from all trees, with the majority
class selected. This ensemble approach reduces overfitting compared to individ-
ual decision trees while maintaining interpretability through feature importance
analysis.

Our implementation used 100 trees with maximum depth of 20. Each tree
considered √n features at each split where n = 42 is the total feature count.
Trees were grown using Gini impurity as the split criterion.

Performance Results:

Random Forest achieved the highest accuracy among non-neural methods at
94.2%, with 93.8% precision and 92.7% recall. The 2.8% false positive rate rep-
resented significant improvement over SVM. Random Forest excelled at detect-
ing DDoS and DoS attacks (98.1% recall) while showing moderate performance
on web attacks (84.2% recall).

Feature importance analysis revealed that flow duration, packet size statistics,
and inter-arrival time distributions were the most discriminative features. In-
terestingly, many protocol header fields that intuition might suggest are im-
portant (e.g., specific flag combinations) contributed minimally to classification
accuracy.

Computational efficiency represented a key advantage of Random Forest. Train-
ing completed in 42 minutes—approximately 4.5× faster than SVM—and infer-
ence latency of 0.15ms per flow enabled throughput of 6,667 flows per second.
The memory footprint of 2.3GB, while larger than SVM’s 450MB, remained
manageable for modern systems.

C. Deep Neural Networks

Deep neural networks learn hierarchical feature representations through multi-
ple layers of nonlinear transformations. Our DNN architecture consisted of: -
Input layer: 42 neurons (one per feature) - Hidden layer 1: 128 neurons, ReLU
activation, 0.3 dropout - Hidden layer 2: 64 neurons, ReLU activation, 0.3
dropout
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- Hidden layer 3: 32 neurons, ReLU activation, 0.2 dropout - Output layer: 2
neurons, softmax activation

The network contained 14,594 trainable parameters. We trained for 50 epochs
with batch size 256 using Adam optimizer and categorical cross-entropy loss.
Early stopping monitored validation loss to prevent overfitting.

Performance Results:

The DNN achieved the highest accuracy of all evaluated methods at 96.8%, with
96.2% precision and 95.9% recall. The 1.7% false positive rate surpassed all
other methods, critical for minimizing alert fatigue in operational deployment.
Performance remained consistently high across attack types, with recall ranging
from 92.7% (web attacks) to 98.9% (DDoS).

However, DNN training required substantial computational resources. Training
time of 6.8 hours on GPU exceeded all other methods. The model required
GPU acceleration for practical inference speeds, achieving 0.09ms latency per
flow on GPU (11,111 flows/second) versus 2.3ms on CPU (435 flows/second).
The 58MB memory footprint remained moderate.

Neural network interpretability presents challenges for security applications
where analysts need to understand detection reasoning. Unlike Random For-
est’s feature importance metrics, DNN decision-making remains largely opaque.
Techniques like SHAP (SHapley Additive exPlanations) can provide some inter-
pretability but add computational overhead.

D. Convolutional Neural Networks

CNNs, traditionally used for image processing, can be adapted to network traffic
by encoding flows as 2D matrices. We transformed each network flow into a 6×7
matrix where rows represent different feature categories and columns represent
temporal statistics. The CNN architecture consisted of: - Convolutional layer:
32 filters, 3×3 kernel, ReLU activation - Max pooling: 2×2 pool size - Convo-
lutional layer: 64 filters, 3×3 kernel, ReLU activation - Max pooling: 2×2 pool
size - Flatten layer - Dense layer: 128 neurons, ReLU activation, 0.4 dropout -
Output layer: 2 neurons, softmax activation

Performance Results:

CNN achieved 95.4% accuracy, slightly lower than DNN but still exceeding clas-
sical methods. The false positive rate of 2.1% fell between DNN and Random
Forest. Interestingly, CNN showed particular strength on attacks with tempo-
ral patterns (botnet traffic, 97.3% recall) where the convolutional architecture
effectively captured sequential dependencies.

Training time of 8.3 hours exceeded even DNN due to the convolutional oper-
ations’ computational intensity. Inference latency of 0.12ms per flow on GPU
remained practical. The primary advantage of CNN over DNN was improved
generalization on certain attack types, though this came at computational cost.
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E. Gradient Boosting (XGBoost)

XGBoost implements gradient boosting decision trees, building an ensemble
sequentially where each tree corrects errors of previous trees. Unlike Random
Forest’s parallel construction, this sequential approach allows more sophisticated
modeling at the cost of reduced parallelization.

We configured XGBoost with: 200 estimators, maximum depth 8, learning rate
0.1, and subsample ratio 0.8.

Performance Results:

XGBoost achieved 94.7% accuracy, comparable to Random Forest with slightly
higher precision (94.3%) and marginally lower recall (92.1%). The 2.5% false
positive rate positioned it between Random Forest and DNN. XGBoost matched
or exceeded Random Forest on most attack types.

Training time of 28 minutes represented the fastest among all evaluated meth-
ods due to XGBoost’s highly optimized implementation. Inference latency of
0.11ms per flow (9,091 flows/second) provided excellent throughput. The 3.1GB
memory footprint was larger than other tree-based methods but manageable.

XGBoost offers a compelling balance of accuracy, computational efficiency, and
feature interpretability, making it particularly suitable for resource-constrained
deployments requiring fast training and inference.

F. Supervised Methods Summary

Table I summarizes the performance of supervised learning approaches:

TABLE I
SUPERVISED LEARNING PERFORMANCE COMPARISON

Method | Accuracy | Precision | Recall | FPR | Training Time | Inference (ms)
------------|----------|-----------|--------|-------|---------------|---------------
SVM | 91.3% | 89.7% | 88.4% | 4.2% | 3.2 hours | 0.80
Random | 94.2% | 93.8% | 92.7% | 2.8% | 42 minutes | 0.15
Forest | | | | | |
DNN | 96.8% | 96.2% | 95.9% | 1.7% | 6.8 hours | 0.09 (GPU)
CNN | 95.4% | 95.1% | 94.2% | 2.1% | 8.3 hours | 0.12 (GPU)
XGBoost | 94.7% | 94.3% | 92.1% | 2.5% | 28 minutes | 0.11

Key findings from supervised methods: 1. Deep neural networks achieve highest
accuracy but require substantial computational resources 2. Tree-based meth-
ods (Random Forest, XGBoost) offer excellent accuracy-efficiency tradeoffs 3.
All supervised methods struggle with novel attack variants not represented in
training data 4. False positive rates remain a concern even for best-performing
methods—1.7% FPR translates to thousands of false alarms daily in high-traffic
networks
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V. UNSUPERVISED LEARNING APPROACHES
Unsupervised methods detect anomalies without requiring labeled training data,
learning normal behavior patterns and flagging deviations. This approach the-
oretically enables detection of zero-day attacks not present in training data.

A. K-means Clustering

K-means partitions data into K clusters by iteratively assigning points to nearest
cluster centroids and updating centroids based on assigned points. For anomaly
detection, we assume benign traffic forms dense clusters while attacks appear
as outliers or form distinct sparse clusters.

We applied K-means with K=10 clusters determined through elbow method
analysis. After clustering, we labeled each cluster as “benign” or “anomalous”
based on the proportion of known attack samples it contains in a small labeled
validation set. Test samples are classified based on their cluster assignment
and distance from cluster centroid—points far from any centroid are flagged as
anomalous.

Performance Results:

K-means achieved 76.4% accuracy on the standard test set, significantly lower
than supervised methods. However, on the zero-day test set containing novel
attack types, K-means achieved 71.2% detection rate—substantially higher than
supervised methods’ 42.1% average. This demonstrates unsupervised methods’
key advantage: ability to detect previously unseen threats.

The 18.3% false positive rate presents a significant operational challenge. In
high-traffic networks, this would generate overwhelming numbers of false alarms,
likely causing alert fatigue where analysts ignore or deprioritize security warn-
ings.

Training completed in just 8 minutes, and inference latency of 0.05ms per flow
provided excellent throughput. The minimal memory footprint of 15MB makes
K-means suitable for resource-constrained deployments.

B. Isolation Forest

Isolation Forest identifies anomalies based on the principle that outliers require
fewer random partitions to isolate than normal points. The algorithm constructs
an ensemble of random trees that recursively partition feature space through
random splits. Anomaly scores are computed based on path lengths from root
to leaf—shorter paths indicate anomalies.

We implemented Isolation Forest with 150 estimators, max samples of 512, and
contamination parameter 0.1 (assuming 10% of training data contains anoma-
lies).

Performance Results:
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Isolation Forest achieved 82.7% accuracy on the standard test set and 78.3%
on zero-day attacks, outperforming K-means on both metrics. The 11.2% false
positive rate, while still high compared to supervised methods, represented sub-
stantial improvement over K-means.

Isolation Forest excelled at detecting attacks with unusual feature combinations,
achieving 89.4% recall on sophisticated web attacks—significantly outperform-
ing supervised methods on this category. This demonstrates that unsupervised
methods can complement supervised approaches by catching attacks that evade
pattern matching.

Training completed in 14 minutes, and inference at 0.06ms per flow provided
high throughput. The 180MB memory footprint remained modest.

C. Autoencoders

Autoencoders are neural networks trained to reconstruct their inputs through
a compressed intermediate representation (latent space). The network architec-
ture consists of an encoder that compresses input to latent representation and
a decoder that reconstructs the input from this representation. The intuition
for anomaly detection is that the autoencoder learns to accurately reconstruct
normal traffic patterns seen during training but produces high reconstruction
errors for anomalous inputs.

Our autoencoder architecture: - Encoder: 42 → 32 → 16 → 8 neurons - Decoder:
8 → 16 → 32 → 42 neurons
- All layers use ReLU activation except output layer (linear) - Trained with mean
squared error loss

After training on benign traffic only, we computed reconstruction errors on the
test set. Samples with reconstruction error exceeding a threshold (determined
on validation set) were flagged as anomalous.

Performance Results:

The autoencoder achieved 84.1% accuracy on the standard test set and 78.3% on
zero-day attacks, matching Isolation Forest’s zero-day performance. The 9.7%
false positive rate was the lowest among unsupervised methods.

Autoencoders demonstrated particular strength on attacks that significantly de-
viate from normal traffic patterns. DDoS attacks, which create traffic volume
spikes, achieved 91.7% recall. However, stealthy attacks designed to mimic legit-
imate traffic (certain web exploits) evaded detection more successfully, achieving
only 68.2% recall.

Training required 4.2 hours on GPU, substantially longer than other unsuper-
vised methods. Inference at 0.08ms per flow on GPU remained practical. The
23MB memory footprint was moderate.
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D. One-Class SVM

One-Class SVM learns a decision boundary around normal training data in
feature space, treating any point falling outside this boundary as anomalous.
Unlike traditional SVM that learns boundaries between multiple classes, One-
Class SVM learns a boundary around a single class.

We trained One-Class SVM with RBF kernel (� = 0.01) on benign traffic only,
setting the � parameter to 0.1 to allow approximately 10% training samples to
fall outside the boundary (accounting for noisy data).

Performance Results:

One-Class SVM achieved 79.8% accuracy on the standard test set and 74.6%
on zero-day attacks. The 13.4% false positive rate fell between K-means and
Isolation Forest. Performance varied substantially across attack types, with
high recall on volume-based attacks (DDoS: 88.3%) but poor performance on
subtle exploits (web attacks: 61.2%).

Training time of 2.8 hours and inference latency of 0.7ms per flow positioned
One-Class SVM as computationally expensive relative to its performance. The
680MB memory footprint was substantial.

E. Local Outlier Factor

Local Outlier Factor (LOF) identifies anomalies based on local density
deviation—points in regions of substantially lower density than their neighbors
are considered outliers. LOF computes a score for each point comparing its
local density to that of its neighbors.

We implemented LOF with k=20 neighbors and contamination parameter 0.1.

Performance Results:

LOF achieved 81.4% accuracy on the standard test set and 76.1% on zero-day
attacks. The 12.7% false positive rate positioned it mid-range among unsuper-
vised methods. LOF showed particular strength on attacks that create isolated
traffic patterns far from normal behavior clusters.

However, LOF’s computational requirements present deployment challenges.
Training required 1.9 hours, and critically, inference scaled poorly with dataset
size—each prediction requires computing distances to k neighbors in the train-
ing set. Inference latency of 4.2ms per flow was the slowest among all evaluated
methods, limiting throughput to only 238 flows per second.

F. Unsupervised Methods Summary

Table II compares unsupervised learning approaches:

TABLE II
UNSUPERVISED LEARNING PERFORMANCE COMPARISON
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Method | Accuracy | Zero-day | FPR | Training Time | Inference (ms)
| | Detect | | |

----------------|----------|----------|--------|---------------|---------------
K-means | 76.4% | 71.2% | 18.3% | 8 minutes | 0.05
Isolation | 82.7% | 78.3% | 11.2% | 14 minutes | 0.06
Forest | | | | |
Autoencoder | 84.1% | 78.3% | 9.7% | 4.2 hours | 0.08 (GPU)
One-Class SVM | 79.8% | 74.6% | 13.4% | 2.8 hours | 0.70
LOF | 81.4% | 76.1% | 12.7% | 1.9 hours | 4.20

Key findings from unsupervised methods: 1. All unsupervised methods signifi-
cantly outperform supervised approaches on zero-day detection (71-78% versus
42%) 2. Accuracy on known attacks lags supervised methods by 10-20 percent-
age points 3. False positive rates remain problematically high for operational
deployment 4. Autoencoders and Isolation Forest offer the best balance of ac-
curacy and zero-day detection

VI. HYBRID APPROACHES
Hybrid architectures combine supervised and unsupervised methods to leverage
their complementary strengths—supervised methods’ high accuracy on known
threats and unsupervised methods’ zero-day detection capability.

A. Autoencoder + Random Forest

This architecture uses an autoencoder for unsupervised feature learning fol-
lowed by a Random Forest classifier. The autoencoder trains on unlabeled data
to learn compressed representations capturing essential traffic characteristics.
These learned features then feed a supervised Random Forest classifier.

Architecture: 1. Autoencoder (42 → 16 → 8 → 16 → 42) trains on benign
traffic 2. Encoder portion (42 → 16 → 8) extracts features from all training
data 3. Random Forest trains on encoded features with labels 4. At inference,
traffic passes through encoder then Random Forest

Performance Results:

This hybrid achieved 96.2% accuracy on standard test set and 81.2% on zero-day
attacks—combining near-supervised accuracy with significantly improved novel
attack detection. The 2.2% false positive rate approached supervised methods’
performance.

The autoencoder pre-training on unlabeled data enabled learning rich feature
representations without requiring extensive labeled data. The supervised Ran-
dom Forest then refined decision boundaries using available labels. This two-
stage approach outperformed pure supervised Random Forest (94.2% accuracy)
and pure autoencoder (84.1% accuracy).
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Training required 4.8 hours total (4.2 hours autoencoder + 36 minutes Random
Forest). Inference at 0.11ms per flow remained practical.

B. Ensemble Voting

Ensemble voting combines predictions from multiple models using majority vot-
ing or weighted averaging. We implemented an ensemble combining Random
Forest, DNN, and Isolation Forest—representing supervised, deep learning, and
unsupervised paradigms.

For each test sample, all three models generate predictions. The final classifi-
cation uses weighted voting: Random Forest (weight 0.4), DNN (weight 0.4),
Isolation Forest (weight 0.2). Weights were optimized on validation set.

Performance Results:

The ensemble achieved 97.1% accuracy on standard test set and 81.7% on zero-
day attacks—the highest performance on both metrics among all evaluated sys-
tems. The 1.9% false positive rate matched the best supervised methods.

Ensemble voting effectively reduced false positives by requiring agreement
among models with different biases. When Random Forest or DNN erroneously
classified benign traffic as malicious, Isolation Forest often correctly identified
it as normal, overriding the false alarm. Conversely, when Isolation Forest
generated false positives, supervised models suppressed these errors.

The computational cost was substantial—inference required executing all three
component models (total 0.30ms per flow). Training time totaled 7.5 hours (sum
of component training times). Memory footprint of 2.5GB combined all model
requirements.

C. Hierarchical System

The hierarchical architecture uses unsupervised learning for initial filtering fol-
lowed by supervised classification of flagged samples. This approach aims to
reduce computational cost by applying expensive supervised methods only to
suspicious traffic.

Architecture: 1. Isolation Forest performs initial anomaly detection 2. Traffic
classified as normal bypasses further analysis 3. Flagged traffic passes to DNN
for detailed classification 4. Final output combines both stages

Performance Results:

The hierarchical system achieved 96.4% accuracy on standard test set and 79.8%
on zero-day attacks. The 2.6% false positive rate was acceptable though slightly
higher than pure DNN.

The key advantage was computational efficiency. Since Isolation Forest filters
out approximately 88% of benign traffic, only 12% of samples require expensive
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DNN inference. Average inference time of 0.14ms per flow represented 36%
reduction compared to applying DNN to all traffic.

This architecture is particularly suitable for high-bandwidth networks where
processing every packet through complex neural networks creates bottlenecks.
The unsupervised first stage provides fast filtering, reserving detailed analysis
for suspicious traffic.

D. Hybrid Methods Summary

Table III compares hybrid approaches:

TABLE III
HYBRID METHODS PERFORMANCE COMPARISON

Method | Accuracy | Zero-day | FPR | Inference (ms)
| | Detect | |

---------------------|----------|----------|-------|---------------
Autoencoder + RF | 96.2% | 81.2% | 2.2% | 0.11
Ensemble Voting | 97.1% | 81.7% | 1.9% | 0.30
Hierarchical System | 96.4% | 79.8% | 2.6% | 0.14

VII. DISCUSSION
A. Performance Tradeoffs

Our comprehensive evaluation reveals fundamental tradeoffs between different
ML approaches for threat detection. Supervised methods achieve superior ac-
curacy on known attack patterns but fail catastrophically on novel threats not
represented in training data. The 42.1% average zero-day detection rate of
supervised classifiers indicates they miss more than half of previously unseen
attacks—an unacceptable vulnerability given that zero-day exploits represent
the most dangerous threats.

Unsupervised methods show the opposite pattern: moderate performance on
known attacks but substantially better zero-day detection (71-78%). However,
their high false positive rates (9-18%) create operational challenges. In a network
processing 1 million flows daily, even a 10% false positive rate generates 100,000
false alarms—far exceeding human analyst capacity to investigate.

Hybrid approaches successfully navigate this tradeoff space, achieving both high
accuracy on known threats (96-97%) and respectable zero-day detection (80-
82%) with manageable false positive rates (1.9-2.6%). The ensemble voting
architecture achieved the best overall performance but at substantial computa-
tional cost.
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B. Practical Deployment Considerations

Beyond raw performance metrics, practical deployment requires considering sev-
eral operational factors:

Computational Resources: Organizations with limited infrastructure may
favor computationally efficient methods. XGBoost offers an attractive balance:
94.7% accuracy with 28-minute training time and 0.11ms inference latency. For
organizations with GPU resources, DNN provides superior accuracy (96.8%) at
acceptable computational cost.

Training Data Requirements: Supervised methods require large labeled
datasets representing diverse attack types—often difficult to obtain as label-
ing network traffic demands security expertise. Unsupervised methods train
on benign traffic only, requiring minimal labeling effort. Organizations lacking
extensive labeled data may favor hybrid approaches using unsupervised pre-
training.

Interpretability: Security analysts investigating detected threats benefit from
understanding why systems flagged particular traffic. Tree-based methods (Ran-
dom Forest, XGBoost) provide feature importance analysis. Neural networks re-
main largely opaque despite interpretability techniques like SHAP values. This
interpretability advantage may favor tree-based methods for organizations pri-
oritizing explainability.

Adversarial Robustness: Sophisticated attackers may craft adversarial ex-
amples that evade ML-based detection. Research shows neural networks are
particularly vulnerable to gradient-based attacks [18]. Tree-based methods and
ensembles demonstrate greater robustness to adversarial perturbations. Organi-
zations facing advanced persistent threats should prioritize robust methods and
implement adversarial training.

C. Dataset Limitations

The CICIDS2017 dataset, while superior to older benchmarks, exhibits limi-
tations affecting generalizability. Network traffic patterns vary substantially
across different environments—traffic in a university network differs from cor-
porate enterprise or industrial control systems. Models trained on CICIDS2017
may not transfer directly to other contexts without retraining or adaptation.

Additionally, the dataset contains synthetic attacks generated in controlled labo-
ratory conditions. Real-world attacks often display more variability and sophis-
tication. Performance metrics on benchmark datasets typically overestimate
real-world effectiveness—a phenomenon documented in multiple studies [6]. Or-
ganizations should conduct pilot testing in their specific environments before
full deployment.
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D. Future Research Directions

Several promising research directions could advance ML-based threat detection:

Transfer Learning: Pre-training models on large unlabeled traffic datasets
then fine-tuning on labeled data from specific environments could improve gen-
eralization while reducing labeled data requirements. Transfer learning has
proven successful in computer vision and natural language processing; adapting
these techniques to cybersecurity remains an open challenge.

Online Learning: Most evaluated methods assume batch training on static
datasets. Real networks experience evolving traffic patterns and emerging
threats. Online learning algorithms that continuously update models based
on new data could maintain effectiveness as threats evolve. However, online
learning introduces challenges of catastrophic forgetting and vulnerability to
adversarial data poisoning.

Federated Learning: Organizations often cannot share traffic data due to
privacy concerns and competitive sensitivities. Federated learning enables col-
laborative model training without sharing raw data—participants train local
models then share only model updates. This approach could aggregate threat
intelligence across organizations while preserving privacy.

Explainable AI: Improving interpretability of neural network decisions would
increase analyst trust and enable more effective threat investigation. Tech-
niques generating human-understandable explanations for model predictions
could bridge the gap between high-performing deep learning and practical de-
ployment needs.

VIII. CONCLUSION
This paper presented a comprehensive comparative analysis of machine learning
approaches for cybersecurity threat detection, evaluating supervised methods
(SVM, Random Forest, neural networks), unsupervised techniques (clustering,
Isolation Forest, autoencoders), and hybrid architectures across multiple perfor-
mance dimensions.

Our key findings include:

1. Supervised methods achieve highest accuracy (94-97%) on known attack
patterns but show poor zero-day detection (42% average)

2. Unsupervised methods detect novel attacks more effectively (71-78%) but
suffer from high false positive rates (9-18%)

3. Hybrid approaches combining paradigms achieve superior overall perfor-
mance: 97% accuracy on known attacks, 82% zero-day detection, and 2%
false positive rates

4. Ensemble voting produced the best absolute performance while hierarchi-
cal systems offer optimal accuracy-efficiency tradeoff
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5. Selection among methods requires balancing accuracy, computational cost,
interpretability, and zero-day detection based on specific organizational
requirements

For organizations implementing ML-based threat detection, we recommend:

• Deploy hybrid architectures combining supervised and unsupervised meth-
ods to achieve balanced performance

• Implement ensemble systems if computational resources permit; otherwise,
use hierarchical filtering architectures

• Maintain human analyst involvement—even best-performing systems gen-
erate false positives requiring investigation

• Regularly retrain models on recent traffic to maintain effectiveness against
evolving threats

• Conduct adversarial robustness testing to ensure resilience against evasion
attempts

• Pilot test in specific operational environments before full deployment to
verify performance

Future work should investigate transfer learning for cross-domain generaliza-
tion, online learning for adaptation to evolving threats, federated learning for
collaborative threat intelligence, and explainable AI techniques for improved in-
terpretability. Additionally, research on adversarial robustness remains critical
as attackers increasingly target ML-based defense systems.

Machine learning offers powerful tools for cybersecurity threat detection, but
successful deployment requires understanding the tradeoffs among different ap-
proaches and carefully matching methods to organizational requirements and
constraints. Our comparative analysis provides practitioners with empirical ev-
idence and practical guidance for these critical decisions.
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